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Introduction mechanisms have not been integrated together. We developed a sys-

Attention is known to guide learning in the real neocortex. Selective tem-level model of the neocortex, where learning and attention sup-
attention should also make the learning task easier on purely theoret- Pporteach other and improve each other’s performance [1]. Later on,
ical grounds. Still, in state of the art computational models, these two We intend to integrate the model into a larger cognitive architecture.
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Learning feature representations in the neocortex Biased-competition model of attention
» Hierarchical organization in both motor and sensory domains. * Adjacent neurons compete with each other.
* The highest levels represent different forms of invariances, abstract and * Long distance excitatory connections bias this competition [4].
long time-scale targets. Covert attention emerges without any specific module controlling it. There
» Adaptation continues throughout lifetime 1n all levels of the hierarchies [2].  1s neurophysiological evidence for the model [5] and computational models

» Learning happens mostly on attended targets [3]. have shown that local competition can produce global attention [6].
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The Model

The mechanism s Lateral Consequences

* Bottom-up feature activations are biased /4 /4\ .-~ connections Lateral associations result in corresponding

with lateral associations, after which compe- o o o from other features winning the local competitions and

tition selects the most important features. A i e s modalities global coherent attention emerges.

* Higher layers have fewer neurons, which Z»‘/:\:\ __ Population of |

leads to Invariances s 2 competing neurons If attention succeeds to select one behav-
» Lateral connections from motor cortex T T T T | iourally important target:

guide the visual features to be motorically —- Bottom-up connections  « [ earning leads to behaviourally impor-
usetul. Visual mput Lateral and top-down  tant representations
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connections * Learning becomes easier because of de-

Figure 1, example architecture of the model cluttering the inputs

Experiments

The data and the network its focus constantly (Fig. 5 and Fig. 6)
The network received 20x20 pixel 1mages as 1n-

puts. Each image 1s an overlap of two different . .
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Figure 2, example input images Figure 3 top row: 1mages Wthh all activated the 0 S i -
’ same representation 1n the highest layer, bottom row: +ime
The network had four lavers with 1120. 112. 280 predictions generated by the highest layer Figure 5, Activations on the highest layer on different
,y ’ ’ : : : time steps are compared to individual object represen-
and 24 neurons, respectively. highest layer generates expectations of the inputs i

through top-down connections. Depending on the

states of lower level neurons, different transfor-

Invariant representations mations of the object will be generated (Fig. 3).
The network learned individual objects from the

cluttered 1mages. The highest (fourth) layer de-
veloped representations that are invariant to ob-
ject transformations. All images 1n the top row of
Fig. 3 activated the same population code 1n layer
four.

Jumping attention
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Figure 6, What the first layer (V1) sees. Images are
generated with first layer’s top-down weights on differ-

When the mput was constant (Fig.
4), but the neurons have a habitua-

tion property, attention will switch Figure 4 ent time instants.
The process can also be reverted, so that the PTOPELEY
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