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Abstract— Denoising source separation (DSS), a recently de- SO index (SOIl) is computed from monthly mean sea level
veloped source separation framework, was applied to extracting pressure anomalies measured at Tahiti (13,3.49.6W) and
components exhibiting slow, interannual temporal behaviour Darwin (12.4S, 130.9E), in Australia. The spatial locations
from climate data. Three datasets with daily measurements were . . T ' L : .
used: surface temperature, sea level pressure and precipitation included in t'h'e simple ENSO Indlce§ a_re chosen SUCh_ that t_he'r
around the globe. For all datasets, the first extracted component t€leconnectivity properties are maximized [4] but their choice
captured the well-known El Nifio—Southern Oscillation phe- is still somewhat arbitrary.
nomenon and the second component was close to the derivative The global ENSO patterns are usually computed as cor-
of the first one. Several other components with slow dynamics a|ations of local anomalies in surface temperature, sea level

were extracted and together the components appear to capture . . . .
essential features of the slow-dynamics state of the climate pressure or other variables with a chosen ENSO index or using

system. The first two components were identified reliably but the regression coefficients from the anomalies to that index [3].
following components may have remained mixed. Nonlinear DSS The obtained spatial patterns depend on the choice of the used
could identify the physically most meaningful rotation among ENSO indices. For example, the sea level pressure correlation
them but only linear DSS was within the scope of this paper. haterns naturally have peaks over Darwin and Tahiti.
This paper offers a simple demonstration of exploratory data Another possibility to capture ENSO events and describe
analysis of climate data by DSS and suggests future lines of ] ) = :
research. their global patterns is applying empirical orthogonal function
(EOF) analysis to pre-filtered anomaly data. EOF analysis is
l. INTRODUCTION the name for principal component analysis (PCA) used in the
El Niflo—Southern Oscillation (ENSO) is a global-scalelimate literature. The first EOF maps usually represent the
phenomenon in the ocean and atmosphere, known as one olBENSO patterns and the first principal component is a good
most prominent sources of interannual variability in weathéndex of the major warm and cold events in the tropical Pacific.
and climate around the world. Its oceanic component (ElIn this paper, we search for physically meaningful states
Nifio—La Nia events) can be defined as a Pacific basin-widéth slow, interannual time course from climate data. Diurnal
increase (El Nio) or decrease (La Na) in the sea surface and annual variability in solar radiation means that the climate
temperatures in the central and/or eastern Pacific Ocean Eljstem has daily and annual cycles but climate events such as
The warm EI Niio events are known to be accompanied by tHENSO whose time course is slower than the annual cycle are
decrease in the sea level atmospheric pressure in the westeravidence that the climate system has intrinsic interannual
Pacific, which is the atmospheric component of ENSO callelynamics.
Southern Oscillation (SO). SO can be defined as a large-scal®Ve show that the basic ENSO events (Elfibliand SO)
oscillation of the air mass between the southeastern tropiegpear as the component with most prominent interannual
Pacific and the Australian-Indonesian regions. variability from the global measurements of surface tempera-
The intensity of ENSO events is traditionally quantifiedure, sea level pressure and precipitation. This is done using a
using simple indices calculated from monthly averaged meacently developed method called denoising source separation
surements taken in special locations. Usually the analy$i3SS) [5] which can be viewed as an extension of independent
is applied to so-called anomalies which refer to deviatiom®mponent analysis (ICA) [6]. The extracted ENSO-related
from average seasonal variation. For example, the intensityaafmponent appears to be an important dimension of the
El Nifio can be estimated using the sea surface temperatciimate state-space but the method uncovers several other com-
(SST) anomalies averaged over thefidli3 region (S8N— ponents whose temporal behaviour exhibits relatively slow,
5°S, 150-90°W) [2], [3], and the most commonly usedinterannual evolution.



Il. MATERIALS AND METHODS
A. DSS method

DSS is a general algorithmic framework which can be used
for capturing interesting hidden phenomena from multivariate L ‘ ‘ ‘
data [5]. As in PCA, factor analysis and ICA, the underlying sz 1 2 s h s
data model in basic DSS method is linear. The mOde“ir'gg. 1. Frequency response of the filter used in DSS. The abscissa is linear
assumption is that there are some components (also calleflequency but is labeled in terms of periods, in years.
factors, sources or state variables depending on the context)
which are reflected in the measurements through a linear
mapping. In the context of factor analysis this mapping is PCA, which is used as the last step of linear DSS, can
called the loading matrix and in ICA the mixing matrix. ~ only separate components which have distinct eigenvalues.

The goal of the analysis is to identify the unknown comPue to noise, finite sample size and unaccurate modelling
ponents and corresponding loading vectors given the data.aksumptions, separation is in practice reliable only if the
our case the components should correspond to the states ofdigenvalues are clearly distinct. Due to the limited scope
climate system. Since we use spatial maps of daily recordingfsthis article, we concentrate on linear DSS although it is
of weather-related variables as the data, the loading vectofsar that nonlinear filtering can identify more reliably the
are spatial “weather maps” which show the typical weathehysically most meaningful separation. In particular, nonlinear
pattern that the extracted state variables correspond to. DSS can in many cases reliably separate components whose

The charasteristic feature of DSS algorithms is that tifeigenvalues” are similar. The main implementational differ-
definition of “interesting phenomenon” comes in the form of ance between linear and nonlinear DSS is that the nonlinear
denoising procedure. DSS can be linear or nonlinear dependfitigring needs to be embedded in an iterative power-method
on whether the denoising is linear or nonlinear. In both casiesplementation of PCA [5].
the first step of the analysis is so-called whitening or sphering.

It amounts to normaliging the (_jata guch that the covz_iriangt_a Data and preprocessing method

structure becomes uniform: unit projections of the whitened

data always produce unit-variance signals. Whitening can be/Ve used globally gridded measurements of major atmo-
implemented by PCA. Since the principal components ag@heric variables over a long period of time. These data are
uncorrelated, the data can be whitened simply by normalisipgpvided by the reanalysis project of the National Centers for
the components to unit variance. The dimensionality of tHenvironmental Prediction—National Center for Atmospheric
data can also be reduced at this stage by retaining only fResearch (NCEP/NCAR) [7]. We applied the analysis to the
components corresponding to largest eigenvalues. same three datasets as [3]: surface temperature, sea level

Whitening may seem counterproductive at first becauB&essure and precipitation data coming from the NCEP/NCAR
after whitening, any useful structure that PCA could use fganalysis project.
abolished. The benefit is that for whitened data, the loadingAlthough the quality of the data is worse for the beginning
vectors of different components can be expected to be rougﬁfy'[he reanalysis period and it considerably varies throughout
orthogonal and for this reason whitening is the first stdpe globe, we used the whole period of 1948-2004. The data
in many ICA algorithms. Unlike in PCA but similarly to are daily measurements from regularly spaced locations over
ICA, the original loading vectors are not restricted to bthe globe with2.5° x 2.5° resolution.
orthogonal which may result in more physically meaningful The long-term mean was removed from the data and the
representations of the data. effect of a denser sampling grid around the poles was taken

In linear DSS, whitening is followed by a linear filtering stepnto account by multiplying each data point by a weight
which renders the variance for some components higher thenoportional to the square root of the local area of its location.
for others. Linear PCA can then identify these componeniBhen, we reduced the spatial dimensionality of the data using
The eigenvalues obtained by PCA tell the variance of tibe PCA/EOF analysis applied to the weighed data. For each
extracted components but due to the initial whitening, th#ataset, we retained 100 principles components which explain
eigenvalue corresponds to the ratio between variance aftedre thand0% of the total variance. We applied the analysis
filtering and before filtering. This is the objective function fofor each dataset separately and for combined data.
linear DSS algorithms. The components are ranked accordingrhe comparison indices SOl andidi 3 SST are available
to the prominence of the desired properties the same wayassa monthly timeseries. In order to be able to compare them
the principal components in PCA are ranked according to théth the results obtained by DSS, we expanded them into
amount of variance they explain. daily measurements and computed the projection which is

In the present work, we aim at finding components whicinalogous to the projection vector in DSS. We also computed
exhibit prominent variability in the interannual timescalethe corresponding timeseries from the whitened data in order
Therefore, the whitened data were filtered using a band-pasde able to evaluate the objective function, the ratio between
filter whose frequency response is shown in Fig. 1. the variance after and before filtering for daily measurements.
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I1l. RESULTS is characterized by the relatively weaker negative regions over
A. Surface temperature the North and South Atlantic and the more dominant patterns

in,the North and South Pacific.

The four most prominent interannual components extracted.l_he three following components demonstrate oscillator
from the surface temperature data are shown in Fig. 2. Tge g P y

time course of the first component (upper curve in Fig. _ehawour W'tt?] roughly 2—3t—y((ajar p?'Od' Judtg|rl;g ftrhom their
shows striking resemblance with the EIfigiindex from the me course, the components do not appear o be the Same as

sea surface temperature in thefii3 region (lower curves). the ones extracted from the surface temperature data.

Note that the upper components are extracted from climate precipitation

data consisting of daily measurements from the whole gIObe’The leading components of interannual variability for the

with the only constraint being the emphasis on strong interan- .~ "~ 9 P . . y for.

nual oscillations. Also note that the values ofiNi3 SST index precipitation data are shown in the rightmost column in Fig. 2
' ﬁime course) and Fig. 3 (spatial patterns). The first component

are monthly averages and consequently appear smoother than.

the dailv averages of DSS components. Rearessing the 8li 294" resembles the structure of the ENSO phenomenon:
y 9 b - "ed 9 The dominant effects are clearly seen throughout the tropical

SST index from the whitened data reveals the correspondllggCiﬁc with maximum values in the Kb 3 region. The clear

daily timeseries (bottom of Fig. 2). . .
The spatial patterns corresponding to the four leading Co%qtterns are the intertropical convergence zone (ITCZ) and

ponents are shown in Fig. 3. The first DSS map contains marnc}mh PaC|f|fc_ convergence zone (S.PZC).' a _boomeran_g_ A
features traditionally associated with Elidi the strongest shaped negatively cc_)rrelate_d_ area in m|d-lat|tud_al Pacific
pattern in central and eastern tropical Pacific with broadgﬁergseudbtcr)gs;‘c;rlli?]réez’lgbigglsglt\ll:n;/iilues in the Indian Ocean
regions along the eastern Pacific coast, a negatively correlated. ™ . '

9 9 9 y ike in the classical ENSO patterns [3], the resemblance

boomerang"-shaped region 20° —40° latitude in both hemi- %gtween the maps of the first DSS components for the surface

spheres linked in the far western equatorial Pacific, positi LT o ) .
values in the Indian Ocean, negative values in the North Paci énperature and precipitation is striking (see the first row in

and around New Zealand [3]. Similar features are observe - 3): The warm areas mostly correspond to wet areas, which

from the regression pattern in Fig. 4 calculated using thieNi > > the importance of local evaporation in the ENSO.
3 SST index. The second DSS component is very similar to the second

However, some features are more distinctive on the p&emponent extracted from the surface temperature data. The

map, for example, a strong teleconnection in southern AfricaPatial pattern has an interesting localization in th@ad\s
strong negative regions in the southern Atlantic and in souffFd'on W ith positively correlated regions over Hawaii qnd near
western parts of the United States. Some other features usublfy Chilian coast. The rest of the tropical and subtropical areas
associated with EI Nio are much weaker, for example, thd'0Sty have negative loadings. The following two components
dipole structure in the tropical Atlantic reported in [8]. again clearly demonstrate slow oscillations but they do not
The second component also appears to be related tofisl Npphpea(; to be the same as the ones extracted from the two
and roughly corresponds to the time derivative of the fir§fner datasets.
component. The third and the fourth components show distingt combined data

oscillations with a 2—3 year period. The loadings in Fig. 3 are The leading i | ts extracted f th
relatively strong at the poles which is partly due to the fact € leading inerannual components extracted from the com-

that overall variability in climatic conditions is strongest at th ined daFa_ |n_clud|ng surfacg ter.'nperat.ure, sea level pressure
poles. and precipitation are shown in Fig. 5 (time course) and Fig. 6

(spatial patterns). As before, the first extracted component is a
B. Sea level pressures good ENSO index. The corresponding spatial patterns shown
The leading components with interannual variability exn the first row of Fig. 6 are very similar to the maps from the

tracted with DSS are shown at the middle columns of Figs.fist row of Fig. 3.
(time course) and 3 (spatial patterns). The first componentThe second extracted component bears similarity to the
again bears striking similarity with the well-known SO phesecond component extracted from the surface temperature and
nomenon both in the time course and in the spatial pattern. Tiprecipitation data. The most significant difference is the sea
DSS map in Fig. 3 is similar to the classical SO pattern [3level pressure loadings which now have a clear pattern in the
there is a major structure seesaw in the Tropics and subtropieagific region. Note that the time course of this component
large pressure departures in the North Pacific, a quadrapaksembles the time derivative of the ENSO index (see Fig. 5).
like structure in the Australasia—South Pacific region with The strong interannual character of the third component
the clear Pacific—South American pattern [9]. Note that the mostly defined by the sea level pressure and precipitation
negative center south to Australia is very weak and shiftedeasurements: Their spatial patterns are similar to the third
more towards New Zealand compared to the SO patterr@mmponents extracted from the separate datasets.
documented in the literature. The fourth component is similar to the fourth component
The classical SO structure is clearer from the regressiertracted separately from the surface temperature and sea level
coefficients shown in Fig. 4. Compared to it, the DSS pattepressure. It is again localized near the North Pole.
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Fig. 2. Most prominent components extracted from three datasets separately. Top four: The time course of the first leading components (black) and their
filtered versions found by DSS (red). The first component at the top. The non-filtered components are normalized to unit variance. Bottom two: ENSO index
(the Nifio 3 SST index for surface temperature and the inverted SOI for sea level pressure and precipitation), the regressed component (black) and its filtered
version (red).
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Fig. 3. The spatial patterns (loading vectors) of the four leading interannual components extracted from three datasets separately. The first component at the
top. The loading vectors are normalised such that the signal of interest (timeseries after filtering) was normalised to unit variance. The maps thus tell how
strongly the slowly evolving state variable is expressed in the measurement data.
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Fig. 4. The regression coefficients from thefili3 SST index (surface tempreature) and the inverted SOI (sea level pressure and precipitation).

‘21: ! ! i ! ! ! ] TABLE I

_gi ¥ VALUES OF THE OBJECTIVE FUNCTION

‘21 1 1 l 1 J w Surface Sea level Precipitation = Combined
0 I temperature  pressure data
20 i ; ! ; | Comp. 1 0.6156 0.2782 0.6182 0.7484
2 ‘ ‘ ‘ ‘ Comp. 2 0.2031 0.1275 0.4005 0.5105
_g Comp. 3 0.1691 0.1068 0.2126 0.3376
— ; : ; i ; Comp. 4 0.1604 0.0963 0.1874 0.3014
2 Comp. 5 0.1185 0.0772 0.1343 0.2993
_g Nifio 3 SST 0.5906 0.2561 0.5792 0.6853
5 l l l l ; SOl 0.5547 0.2434 0.4634 0.5354
0 R/VMN\/W\/V\/W\F/\/V\M/\/W

-5 i

1950 1960 1870 1980 190 2000 data in Table Il further support the finding that the first two
components can be reliably identified while the following

Fig. 5. Most prominent components extracted from the combined data. Tfree components form a subspace within which the physicall
four: The time course of the first leading components (black) and their filtergg)r P P phy y

versions found by DSS (red). The non-filtered components are normalized St m_eaninngl rotation may n_Ot have been_id_ent.iﬁEd- The
unit varaince. Bottom: The derivative of the topmost filtered component barealues in Table Il are good predictors of the similarity of the

similarity to the second component. components in different conditions. It should also be noted that
TABLE | even if the best rotation of the components is not found, the

CORRELATIONS OF THE FIRST COMPONENT ANEENSOINDICES subspaqe clearly captures_ p.hyS|caIIy me_anlngful state varlables
Suface  Sealevel Precipiaion Combined Of the climate system. This is clearly evident in the prominent

temperature  pressure data temporal structure present in all the extracted components.

Nifio 3 SST | 0.9765 0.9502 0.9513 0.9323 : TP ; .
SO 0.9417 0.9264 0.8300 0.8024 . Nophnear filtering can separate processes _wh|ch have sim

ilar eigenvalues. Moreover, as the signals of interest are state

Table | lists the correlation coefficients between the fir%/f’jm"’lbleS which have a predictable time course, an important

extracted component and SOI andfibi3 SST index. Some- uture line of research will be to model nonlinear dynamics of

what surprisingly even the component extracted from se?ﬁ-e state variables and extend the denoising to be nonlinear. In

level-pressure data resembles moréidNB SST index than € global climate system, everything depends on everything

SOl although SOI is defined in terms of sea level pressu se, but a sensible criterion for separation is that the states
Moreover, for combined data the correlation is weaker than ould have as little couplings as possible (cf. this physical

surface temperature. Table Il lists the variance of the filter r&dependence with statistical independence criterion in ICA).

components divided by the variance of the non-filtered on _3|m|I§r separation criterion was used in [_10]'
This is the index which is used as the objective function Nonlinear effects should also be taken into account when

for extracting the components. The first extracted componéHtalysing the results because they are known to exist between
therefore always has the largest value in all conditions. (e staté variables. The most prominent phenomenon in cli-
mate system is the seasonal variation and it is known that

IV. DISCUSSION ENSO has different effects depending on the time of the year,
The same first or first two components are found in &ihat is the combined effect of ENSO and annual oscillation
three datasets which is strong evidence in support of phms a nonlinear component. Similar nonlinear effects can be
ical meaningfulness. In linear DSS, each component can @¢pected to be present among all state variables but they are
characterised by their eigenvalue and only components whéé revealed by static loading matrices.
eigenvalues are clearly different can be reliably separatedin this paper we demonstrated the first time how DSS can
This is analogous to PCA where components with equiaé applied to exploratory data analysis of climate data. We
eigenvalues form subspaces with rotational indeterminacy. Téleowed that it is possible to identify patterns which reflect
eigenvalues of the components extracted from the combingaysically meaningful dynamics, which can be useful for both
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Fig. 6. The spatial patterns of the four leading interan

prediction of future data and as the first, exploratory stage @]
interpreting the data. A data-driven approach cannot identig/

: i X 3
the underlying physical mechanisms of the found phenomen
but it can identify targets for future studies. For instance, with
a low-pass filter, DSS extracts a very clear trend from the daté!]
This may or may not be related to, say, global warming anfg]
more research is required to assess this, but DSS can certainly
provide a good starting point for future research. [6]
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