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1. INTRODUCTION

Finding a meaningful representation of the observed data

is a central problem in many research fields. In many

applications, collected data contain measurements of a

set of variables xi obtained at different time instances t.

These measurements are typically represented as a set

of vectors x(t) = [ x1(t) . . . xi(t) . . . xN (t) ]T collected

during the observation period t = 1, ..., T . In climatology,

such datasets may contain observed weather conditions

in certain spatial locations during a certain period of time.

A typical task of statistical data analysis is to find im-

portant, interesting data characteristics. Often, these

interesting properties are captured by a set of vectors

s(t) = [ s1(t) . . . sj(t) . . . sM (t) ]T obtained by a linear

transformation of the observed data:

s(t) = Wxx(t) , (1)

where Wx is the matrix defining the transformation. The

matrix Wx is found such that the vectors s(t) have suit-

able properties. In statistical climatology, weather mea-

surements can be analyzed in this way in order to find

physically meaningful patterns of climate variability (see,

e.g., Richman 1986).

Several classical criteria optimized to find Wx in (1)

include minimum error of reconstructing x(t) from s(t),

simplicity of the transformation structure, interestingness

of the properties in signals sj(t), independence of sig-

nal structures etc. The resulting techniques are princi-

pal component analysis (PCA) or empirical orthogonal

functions (EOF) (von Storch and Zwiers 1999), factor

analysis (Harman 1967), projection pursuit (Jones and

Sibson 1987), independent component analysis (ICA)

(Hyvärinen et al. 2001) etc. These methods have be-

come popular techniques for exploratory data analysis in

many applications including climatology (see, e.g., Rich-

man 1986; Aires et al. 2000; Lotsch et al. 2003; Basak

et al. 2004).

Recently, we have used a general algorithmic frame-

work called denoising source separation (DSS) (Särelä

and Valpola 2005) to implement several criteria defin-

ing transformation (1) and applied them to analysis of

global climate measurements (Ilin et al. 2005, 2006a).

In the analysis, we seek uncorrelated components which
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maximally express some desired, interesting properties.

These components are found using an iterative proce-

dure which gradually isolates the desired signal struc-

tures.

DSS is a powerful tool for exploratory analysis of

large spatio-temporal climate datasets. The motivation

for seeking a particular type of components can come

from general statistical principles (e.g., maximizing non-

Gaussianity of components gives the ICA solution), ex-

pert knowledge (e.g., some information about the spectral

structure of components), or based on some elementary

inspection of data (e.g., by observing some regular pat-

terns in them). For example, in the climate data analysis

we might be interested in some phenomena that would

have prominent variability in a certain timescale or exhibit

slow changes. Then, using a properly designed separa-

tion algorithm can help extract the components in which

this type of structure is most prominent.

In this paper, we overview several separation crite-

ria used to identify model (1), which are implemeted in

the common algorithmic framework of DSS. We also re-

port results on applying the corresponding algorithms

to analysis of global weather measurements from the

NCEP/NCAR reanalysis data.

The paper is organized as follows. Section 2 outlines

the general modeling assumptions of the source sepa-

ration techniques and presents the common algorithmic

framework used in this paper for implementing various

separation criteria. The analyzed dataset is described in

Section 3.

Section 4 presents an algorithm which allows for ex-

traction of components with the cleanest variability in the

timescale of interest. In the experiments, we show that

the components extracted as the sources with the most

prominent interannual variability are clearly related to the

well-known El Niño–Southern Oscillation (ENSO) phe-

nomenon.

Section 5 outlines another frequency-based algorithm

which tries to find a representation in which components

have as distinct power spectra as possible. In the ex-

periments with global climate data, this algorithm is able

to obtain a meaningful representation of the slowest cli-

mate phenomena as a combination of trends, decadal-

interannual (quasi-)oscillations, the annual cycle and

components related to slowly changing seasonal varia-

tions.

Section 6 presents the analysis which allows for finding



components whose activations (variances) have promi-

nent temporal structure in the timescale of interest. In

the experiments on analysis of global temperature mea-

surements, several fast changing components with re-

markable slow behavior of their variances have been ex-

tracted.

Section 7 outlines an algorithm whose aim is to find

groups of dynamically coupled components with the most

predictable time course. The potential application of this

approach to analysis of climate data may reveal complex

climate phenomena with predictable dynamics.

Finally, in Section 8, we discuss the presented tech-

niques and outline some possible directions of future re-

search.

2. DATA ANALYSIS METHOD

2.1 Linear generative model

Many methods related to linear data analysis (1) are for-

mulated in the context of estimating a generative model

x(t) = As(t) , (2)

where the observations xi(t) are modeled as linear mix-

tures of a number of hidden sources sj(t), and the matrix

A = [aij ] contains the mixing coefficients:

xi(t) =
MX

j=1

aijsj(t), i = 1, ..., N . (3)

The index i runs over the measurement sensors (typically

spatial locations), and discretized time t runs over the ob-

servation period: t = 1, ..., T . The matrix A is usually

called a mixing matrix or a loading matrix depending on

the context.

If we denote the columns of matrix A by ai, then (2)

can be written as

x(t) =

MX

j=1

ajsj(t) . (4)

In climate data analysis, the time series sj(t) usually cor-

respond to the time-varying states of the climate system,

and the loading vectors ai are the spatial maps showing

the typical weather patterns corresponding to the compo-

nents.

The goal of the analysis is to estimate the unknown

components sj(t) and the corresponding loading vectors

ai from the observed data x(t) alone. This problem is of-

ten referred as blind source separation (BSS). This prob-

lem cannot be solved without extra assumptions or prior

knowledge about the unobserved signals or the loading

structure. In exploratory settings, this knowledge usually

comes from the inspection of the available data, expert

knowledge or tested hypotheses.

2.2 Algorithmic framework for estimation

DSS is a general algorithmic framework which identifies

the model (3) by assuming that

1. the sources sj(t) are uncorrelated;

2. the sources sj(t) maximize some desired proper-

ties.

Examples of the desired properties of interest include

non-Gaussianity, slowness, prominent dynamic or activa-

tion structure etc. DSS can be viewed as an extension of

ICA without the strict independence assumption.

Whitening The first, preprocessing step in the algo-

rithmic framework of DSS is called whitening. The goal of

whitening is to make the covariance structure of the data

uniform in such a way that any linear projection of the data

has unit variance. The positive effect of such a transfor-

mation is that any orthogonal basis in the whitened space

defines uncorrelated sources. Therefore, this allows for

restricting the mixing matrix to be orthogonal afterwards.

Whitening is usually implemented by PCA. Denoting

by X the matrix which contains the observed vectors

x(t) in its columns and assuming that the measurements

xi(t) have been normalized to zero mean, the matrix of

sphered data Y is calculated as

Y = D
−1/2

V
T
X , (5)

where D is the diagonal matrix of eigenvalues of the data

covariance matrix, defined as 1

T
XXT. The columns of

matrix V are the corresponding eigenvectors. Multipli-

cation by V corresponds to orthogonal rotation of the

data using the directions which maximize the data vari-

ance (see, e.g., Diamantaras and Kung 1996) and D−1/2

scales the principal components to unit variance. Each

column y(t) of the matrix Y is a linear transformation of

the observation vector x(t). It is easy to show that the

covariance matrix of the whitened data equals the identity

matrix, that is 1

T
YYT = I. The dimensionality of the data

can also be reduced at this stage by retaining only the

principal components corresponding to the largest eigen-

values in D.

Matrix Y of whitened data is not unique: Any orthogo-

nal rotation of its columns produces a matrix

S = WY (6)

that also has unit covariance:

1

T
SS

T =
1

T
WYY

T
W

T = I (7)

Therefore, a set of uncorrelated sources S can be found

by using (6) with the restriction that W is an orthogonal
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Figure 1: The general iterative procedure of the algorith-

mic framework of DSS.

matrix. Note that each column s(t) of the matrix S is a

linearly transformed vector y(t): s(t) = Wy(t). Matrix W

(or the overall transformation matrix Wx = WD−1/2VT)

is often called a demixing matrix in the ICA literature.

Iterative procedure based on denoising The rota-

tional ambiguity of the whitened data matrix expressed in

(6) can be fixed by using the requirement that the sources

maximize some desired properties. In order to optimize

these properties, one could maximize a quantity F(S)

that would measure the amount of interesting structure

in the source signals S. The measure F is a function of

W because the sources are defined by demixing through

(6). Therefore, F can be optimized w.r.t. W using the

following gradient-based procedure (see details in Särelä

and Valpola 2005; Ilin 2006a):

1. Source estimation using (6) using the current esti-

mate of the demixing matrix W;

2. Updating the source estimates using the gradient-

based step:

bS = S + µ
∂F

∂S
= ϕ(S) ; (8)

3. Reestimation of the demixing matrix:

W
T = orth(YbST) , (9)

where orth(.) is an operator giving the orthogonal

projection of the matrix YbST onto the set of orthog-

onal matrices.

The corresponding iterative procedure is presented in

Fig. 1. The iterations continue until the source estimates

do not change.

The basic idea of the algorithmic framework of DSS

is to design separation algorithms following the general

sequence of steps presented in Fig. 1. The separation

criterion is introduced in the procedure in the form of a

suitably chosen denoising function ϕ. In case the algo-

rithm is derived from an optimized measure F , the cor-

responding denoising function is given by (8). For many

practical cases, however, it can be easier to construct an

update rule
bS = ϕ(S) (10)

with a sensible function ϕ than to derive a gradient-based

rule (8) from an objective function. First, the interest-

ing signal structure could be difficult to measure using

a simple index F . Second, the derivation of the gradient

∂F/∂S could be cumbersome, especially for complex F .

It is also possible that the gradient-based update rule in

(8) is not robust as, for example, it can be sensitive to

some particular values in S.

In general, the denoising function ϕ(S) should be de-

signed such that it emphasizes the desired (interesting)

properties of the signal and removes irrelevant informa-

tion from S. It can represent a gradient-based update rule

or its modification. Sometimes, it is possible to derive an

appropriate denoising function from rather heuristic prin-

ciples.

In DSS terminology, the iterative procedure in Fig. 1

is usually interpreted as extension of the power method

for computing the principal components of Y. With-

out denoising, this procedure is indeed equivalent to the

power method, because then Steps 1 and 3 give w =

orth(YYTw). Since Y is white, all the eigenvalues are

equal and the solution without denoising becomes de-

generate. Therefore, even slightest changes made by

denoising ϕ can determine the rotation. Since the de-

noising procedure emphasizes the desired properties of

the sources, the algorithm can find the rotation where the

properties of interest are maximized.

It should be noted that the presented procedure is very

general. The essential part of any specific algorithm im-

plemented in this framework is the denoising procedure.

In fact, many existing ICA algorithms fall into the pattern

of DSS although they have been derived from other per-

spectives, typically from a properly chosen cost function

(e.g., Hyvärinen and Oja 1997; Barros and Cichocki 2001;

Cichocki et al. 2002).

Linear filtering In some cases, the interesting prop-

erties of a source signal can be obtained by applying a

linear temporal filter. For example, the sources are some-

times known to be cyclic over a certain period of time or to

have prominent variability in a certain timescale and a fil-

tering procedure, which passes interesting spectral com-

ponents and removes all other frequencies, would em-

phasize this characteristic structure of the sources.

A relevant quantity that measures the amount of inter-

esting structure is the ratio of the variances of a signal

after and before filtering:

F(s) =
var sf

var s
, (11)

where sf is the filtered version of the signal s. The mea-
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Figure 2: The steps of the separation algorithm in the

special case of linear temporal filtering.

sure (11) can be understood as the relative amount of

energy contained in the interesting part of the signal and

it attains its maximum value of unity if filtering does not

change the signal. We use the term clarity for this quan-

tity.

The sources with the most prominent characteristics

captured by linear filtering could be estimated one after

another by maximizing the measure (11) using the iter-

ative procedure outlined in Fig. 1. Then, the denoising

procedure simply corresponds to linear temporal filtering.

However, in many practical cases, such estimation can be

performed in just three steps shown in Fig. 2: the prepro-

cessing step of whitening is followed by filtering and PCA

(Särelä and Valpola 2005).

The intuition behind this approach is that filtering on the

second step renders the variances of the sphered com-

ponents different and the covariance matrix of bY is no

more equal to the identity matrix. Note that in many prac-

tical situations, this filtering can be done using the same

filter as the one used to obtain sf in (11). Then, PCA

can identify the directions which maximize the properties

of interest. The eigenvalues obtained from PCA on the

third step give the values of the objective function F for

the found sources. Thus, the components are ranked ac-

cording to the prominence of the desired properties (their

clarity values) the same way as the principal components

in PCA are ranked according to the amount of variance

they explain.

Linear temporal filtering is in practice implemented us-

ing a filtering matrix F operating on the rows of matrix Y:
bY = YF. In the case of frequency-based filtering, this

matrix can be designed, for example, based on the or-

thogonal matrix of the DCT basis. More details about the

DSS method were reported by Särelä and Valpola (2005).

Spatial patterns In the applications, we are interested

not only in the sources (rows of matrix S), but also in the

matrix A in (2). From (2), (6) and (5), we obtain

X = AS = AWY = AWD
−1/2

V
T
X . (12)

Thus A should be chosen as the (pseudo)inverse of

WD−1/2VT which is

A = VD
1/2

W
T . (13)

Since the extracted components si(t) are normalized to

unit variances, the columns of A have a meaningful scale.

Note that the signs of the extracted components cannot

generally be determined (which is a well-known property

of classical ICA) except in some special cases.

3. DATA

In the experiments, we use the proposed techniques to

analyze global weather measurements provided by the

reanalysis project of the National Centers for Environ-

mental Prediction–National Center for Atmospheric Re-

search (NCEP/NCAR) (Kalnay et al. 1996; NCEP data

2004). We analyze measurements of three major atmo-

spheric variables: surface temperature, sea level pres-

sure and precipitation, which are often used for describ-

ing global climate phenomena such as ENSO (Trenberth

and Caron 2000).

The data represent globally gridded measurements

over a long period of time. The spatial grid is regularly

spaced over the globe with 2.5◦ × 2.5◦ resolution. Al-

though the quality of the data considerably varies in time

and throughout the globe, we used the whole period of

1948–2004. Thus, the data is very high-dimensional:

more than 10,000 spatial locations by more than 20,000

time instances for each of the three datasets.

The drawback of the reanalysis data is that they are

not fully real. The measurements missing in some spatial

locations or time instances have been reestimated based

on the available data and approximation models. Yet, the

data is as close to the real measurements as possible.

The main advantage of the analyzed dataset is its reg-

ularity which makes the proposed statistical techniques

applicable to the analysis of this data.

To preprocess the data, the long-term mean was re-

moved and the data points were weighted to diminish

the effect of a denser sampling grid around the poles:

each data point was multiplied by a weight proportional

to the square root of the corresponding area of its lo-

cation. This produced the original data matrix X. The

spatial dimensionality of the data was then reduced us-

ing the PCA/EOF analysis applied to the weighted data.

For each dataset, we retained 100 principal components.

This means that for each variable the columns of Y in

(5) have dimension 100, while those of the original X are

over 10,000 dimensional. Yet the principal components

explain more than 90% of the total variance, which is due

to the high spatial correlation between nearby points on

the global grid. The proposed techniques are then ap-

plied to the resulting principal components.

4. COMPONENTS WITH PROMINENT VARIABILITY

IN CERTAIN TIMESCALE

In the first experiment, we are interested in compo-

nents which would exhibit prominent slow behavior in the
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Figure 3: The frequency response of the filter used to em-

phasize the timescale of the interesting interannual varia-

tions. The abscissa is linear in frequency but is labeled in

terms of periods, in years.

timescale of interest.

Components with prominent slow behavior can be ex-

tracted from the data using DSS with low-pass or band-

pass filtering as denoising. This type of denoising is lin-

ear and therefore the simple algorithm described in Fig. 2

is applicable here. The extracted slow components are

ranked according to their clarity values. That is, the first

component contains the least relative amount of other fre-

quencies in its power spectrum.

4.1 ENSO as Component with Most Prominent

Interannual Variability

In the experiment described next, we aim at finding com-

ponents which exhibit prominent variability in the interan-

nual timescale. Therefore, the band-pass filter whose fre-

quency response is shown in Fig. 3 is used as the linear

temporal filtering.

Fig. 4 presents the monthly averages of the four com-

ponents with the most prominent interannual variability

extracted from the data combining the three analyzed

variables. The time course of the first component (up-

per curve in Fig. 4) shows striking resemblance with the

El Niño index calculated from the sea surface tempera-

ture (SST) in the Niño 3 region (presented in Fig. 4). The

correlation coefficients between the extracted component

and the Niño 3 SST index is 0.9323. Note that the upper

components are extracted from climate data consisting of

daily measurements from the whole globe, with the only

constraint being the emphasis on strong interannual vari-

ability.

The spatial patterns corresponding to the two leading

components are shown in Fig. 5∗. The first surface tem-

perature map contains many features traditionally associ-

ated with El Niño (Trenberth and Caron 2000). The corre-

sponding sea level pressure map is similar to the classical

Southern Oscillation pattern (Trenberth and Caron 2000)

and the precipitation map contains many features asso-

ciated with the ENSO phenomenon. Similar ENSO fea-

∗The maps are plotted using the mapping toolbox developed

by Pawlowicz (2000).
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Figure 4: Top four: Monthly averages of the four compo-

nents with the most prominent interannual variability ex-

tracted from the dataset combining surface temperature,

sea level pressure and precipitation. Bottom two: The

Niño 3 SST index (Niño 3 SST 2004) and its derivative.

They bear similarity to the first and second components

respectively.
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tures can be observed from the regression patterns cal-

culated using the Niño 3 SST index (see Ilin et al. 2006a).

The second extracted component also appears to be

related to ENSO and it roughly captures some features

of the time derivative of the El Niño index (see Fig. 4).

The corresponding precipitation pattern has an interest-

ing localization in the Niño 3 region and mostly negative

loadings in the rest of the tropical and subtropical areas.

The third and the fourth components show weaker oscil-

lations in the interannual time scale. Similar components

also emerge in the results of the spectral separation re-

ported in Section 5.

The same clarity-based analysis was applied to the

three datasets separately and the first extracted compo-

nent was always a good ENSO index. Somewhat sur-

prisingly even the component extracted from sea-level-

pressure data resembled more the Niño 3 SST index than

Southern Oscillation Index (SOI) although SOI is defined

in terms of sea level pressure. More details on the pre-

sented experiments can be found in our articles (Ilin et al.

2005, 2006a).

5. COMPONENTS WITH DISTINCT SPECTRAL

STRUCTURES

5.1 Spectral separation

The algorithm described in the previous section is useful

for extracting components with prominent variability in a

certain frequency range. This requires some knowledge

about the expected power spectra of the components of

interest. Typically, this information does not exist and the

prominent spectral characteristics of the sources should

be estimated automatically.

In this section, we discuss the algorithm which can be

seen as an extension of the previous approach and which

achieves signal separation based on the assumption that

the sources have distinct power spectra. Similarly to the

previous approach, the interesting signal properties are

emphasized by linear temporal filtering. However, since

the sources are expected to have distinct frequency con-

tents, an individual filter is applied to each source. The

characteristic spectral properties of the sources are not

known in advance, and therefore the filters are adjusted

to the prominent spectral characteristics of the sources

which emerge during the learning procedure. This ap-

proach is implemented using the general sequence of

steps presented in Fig. 1 in which the denoising function

performs temporal filtering using a set of adaptive filters.

The corresponding denoising procedure is briefly out-

lined in the following (see more details in Ilin et al. 2006a;

Ilin 2006a). The first step of the denoising procedure is

to compute the power spectra of the current source esti-

mates. This gives an idea about the characteristic spec-
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Figure 6: The frequency response of the filter used in

the experiments on spectral separation of slow climate

components. The abscissa is linear in frequency but is

labeled in terms of periods, in years.

tral properties of each source and suggests which fre-

quencies should be emphasized by filtering. The next

step is to calculate the individual filters such that the cor-

responding frequency patterns are made as distinct as

possible compared to the other sources. Such a compe-

tition procedure naturally requires that all the sources are

estimated simultaneously. The competition mechanism is

in practice implemented using rather heuristic principles

and it is based on partial whitening the power spectra.

The final step of the denoising procedure is filtering the

source estimates using the filters adapted to the emerg-

ing spectral characteristics of the sources. Note that the

presented algorithm essentially performs ICA in the fre-

quency domain.

5.2 Frequency-Based Representation of Slow

Climate Variability

Steps of the analysis In the experiments, we applied

the proposed spectral separation analysis to obtain inter-

esting representation of the slow climate variability. We

analyzed the dataset combining three variables: surface

temperature, sea level pressure and precipitation.

The first step of the analysis was to identify the sub-

space of the slowest climate variations using the clarity-

based approach described in the previous section. The

emphasis was put on the slow variations in the frequency

band shown in Fig. 6. Therefore, this filter was used for

linear temporal filtering in the three-step procedure de-

scribed in Fig. 2.

The cleanest components extracted on this stage had

prominent patterns both in the time course and in the spa-

tial loadings (see their depiction in Ilin and Valpola 2005).

The annual cycle appeared in the two leading compo-

nents as the cleanest slow source of climate variability.

The following components contained mixtures of clearly

emerging trends, ENSO oscillations, and other quasi-

oscillating slow components. Except for the two annual

cycle sources, none of the components had a clear dom-

inant peak in its power spectrum.

The second step of the analysis was to analyze the



cleanest slow components using the algorithm outlined in

Section 5.1. This yielded a representation in which ro-

tated components have as distinct spectral properties as

possible. We analyzed only 16 cleanest components at

this stage as the results were easily interpretable for this

number of components. This procedure roughly catego-

rized the 16 resulting components into three groups (also

called subspaces): five components with slow trends,

six components with prominent interannual variability and

five components oscillating with close-to-annual frequen-

cies.

Based on the obtained results, we found it possible to

improve the representation within the three subspaces.

The subspace of trends was rotated using the clarity-

based analysis similarly to Section 4. The filter shown in

Fig. 6 was used to specify the interesting frequency range

for calculating clarity values. The subspace with promi-

nent interannual variations was rotated by applying again

the spectral separation algorithm which makes the spec-

tra as distinct as possible. This somewhat improved the

representation within the subspace because the spectral

characteristics of the components from the other two sub-

spaces did not affect the competition mechanism on this

stage. More details on the steps of the analysis can be

found in our journal paper (Ilin et al. 2006a).

Results The time courses of the 16 slow components

obtained by the described procedure are shown in Fig. 7.

The spatial patterns corresponding to components 1, 10

and 11 are presented in Fig. 7. The loadings correspond-

ing to the rest of the components can be found in the

journal article (Ilin et al. 2006a).

The first five sources are the slowest trends. Their

power spectra are very similar and therefore their good

separation cannot be guaranteed by the spectrum com-

petition procedure. One would naturally require a much

longer observation period in order to distinguish differ-

ences in the frequency contents of the slowest climate

phenomena. Some other criteria such as the spatial lo-

calization of the components might give a more meaning-

ful representation in this subspace.

The first component with the constantly increasing time

course is most prominent among these sources. This

component might be related to global warming as the cor-

responding surface temperature map has mostly positive

values all over the globe (see the corresponding spatial

patterns in Fig. 7). The highest temperature loadings of

this component are mainly concentrated around the North

and South Poles and the sea level pressure map has a

clear localization around the South Pole. The precipita-

tion loadings are mostly located in the tropical regions

with negative values over the oceans and North Africa

and with prominent positive values in the Australian-
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Figure 7: The time course of the components rotated

within the subspaces.

Indonesian region, near the Peruvian coast and in South

Africa. The other extracted trends might be related to

climate phenomena oscillating in the multidecadal time

scale such as, for example, the Atlantic Multidecadal Os-

cillation (Enfield et al. 2001).

The following six components 6–11 exhibit prominent

quasi-oscillatory behavior in the interannual timescale.

The most prominent sources here are components 7 and

8 which are related to ENSO. These components are very

similar to the first two components with the most promi-

nent interannual variability presented in Section 4.1 (see

Fig. 4-5). Component 8 is similar to the ENSO index

and component 7 bears resemblance with the differential

ENSO index. The correlation coefficient of component 8

is 0.90 for the Niño 3 SST index and -0.67 for SOI. The

correlation coefficient between component 7 and the dif-

ferential El Niño is 0.40.

Components 6 and 11 resemble the third and fourth

components obtained in the experiments reported in Sec-

tion 4.1. Component 6 might be related to slowly chang-

ing aspects of the ENSO phenomenon as its loadings are
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Figure 8: The spatial patterns of components 1, 10 and 11 obtained by frequency-based representation of the 16

most prominent slow components extracted from the data combining surface temperature, sea level pressure and

precipitation.

mostly localized in the ENSO regions. Component 11 has

quite distinct spatial patterns with a prominent tempera-

ture dipole in the Northern Hemisphere and a dominat-

ing sea level pressure dipole somewhat resembling the

North Atlantic Oscillation or Arctic Oscillation patterns.

This component may be related to slowly changing as-

pects of these phenomena. The correlation coefficient to

the Arctic Oscillation index is 0.42.

Component 10 might be related to the interactions of

ENSO with the annual cycle. It is well known that ENSO

has different effects depending on the time of the year

(Trenberth and Caron 2000). This can be modeled by

a varying mixing matrix A = A(t) whose columns ai

change throughout the year. The first order approxima-

tion yields

ai(t) = ai,1 + ai,2ss(t) + ai,3sc(t) ,

where ai,1 are loading vectors of the constant effect, ss(t)

and sc(t) are the sine and cosine components of the an-

nual oscillations and ai,2, ai,3 are the loading vectors of

the seasonally changing effects. This is equivalent to hav-

ing extra components in model (4):

ai(t)si(t) = ai,1si(t) + ai,2si,2(t) + ai,3si,3(t) ,

where si,2(t) = ss(t)si(t) and si,3(t) = sc(t)si(t) are the

annual oscillations modulated (multiplied) by the climate

source si(t). Component 10 has characteristic spindles

happening during El Niño episodes. The frequency of

these spindles corresponds to the frequency of the ENSO

signal modulated by the annual oscillations.

The last set of the sources are components 12–16

which contain prominent oscillations whose frequencies

are close to the frequency of the annual oscillations. The

dominating components here is the annual cycle (compo-

nents 15–16). The rest of the sources resemble the an-

nual oscillations modulated (multiplied) by very slow com-

ponents. Thus, this set of components might be related



to some phenomena slowly changing the annual cycle.

Since the power spectra of these components are quite

similar, good separation may not have been achieved

here. Some other criteria may be better for finding a more

meaningful representation within this subspace.

6. COMPONENTS WITH TEMPORALLY

STRUCTURED VARIANCES

The previous sections considered algorithms for extract-

ing prominent components with slowly changing time

course. However, interesting slow behavior can be found

in fast changing components as well. In our recent confer-

ence paper (Ilin et al. 2006b), we introduce an algorithm

which seeks fast components with prominent temporal

structure of variances. The motivation of the proposed

analysis comes from the inspection of the global weather

measurements and the observation that fast weather vari-

ations have distinct yearly structure. This raises the

question whether there are similar variations on slower

timescales. The aim of the algorithm is to capture such

prominent slow variability of the variances with the possi-

bility to put emphasis on different timescales.

In order to derive the algorithm, we make a practical

assumption that each interesting source sj(t) in model

(4) represents a realization of a zero-mean Gaussian pro-

cess with changing (non-stationary) variance vj(t). The

idea of the analysis is to extract the components whose

variances vj(t) exhibit the most prominent variations in

the timescale of interest. Then, the amount of interesting

structure in a signal can be measured by the quantity

F =
1

2
log

1

T

X

t

v(t) −
1

T

X

t

1

2
log v(t) ≥ 0 , (14)

which is always non-negative and attains its minimum

value of zero if the process variance v(t) is stationary.

In order to use the proposed measure, one needs to

estimate the variances v(t) of a signal at each time in-

stant. The assumption that variances v(t) have promi-

nent variability in the specific timescale helps estimate

v(t) from one realization of the stochastic process: We

assume that the variance can be estimated in practice by

filtering the squared signal values s2(t) such that only the

interesting frequencies are preserved.

The measure F in (14) is a function of the variances

v(t) which are estimated from the source values s(t).

Thus, F is a function of s(t) and can be maximized w.r.t.

s(t) using the gradient ascent method explained in Sec-

tion 2.. The required gradient can be approximated as

∂F

∂s(t)
≈

∂F

∂v(t)
s(t) , (15)

which yields the denoising function

bs(t) = g(v(t))s(t) . (16)

The values g(v(t)) can be termed masks as they are ap-

plied to the current source estimates to get the new ones.

In our conference paper (Ilin et al. 2006b), we pro-

posed to use a nonlinearity g(v) = β + tanh(αv) , with

α, β some constants, which can be understood as an ap-

proximation of ∂F/∂v under some assumptions.

Thus, the denoising procedure ϕ(S) that corresponds

to this analysis has the following steps. It starts with es-

timating the local variances v(t) by filtering the squared

signal values using a filter which preserves only the fre-

quencies in the range of interest. Then, the nonlinearity

g is applied to the variance estimates in order to calcu-

late the masks g(v(t)). In order to emphasize the domi-

nant signal activations, the constant β was chosen such

that the minimum values of the masks are put to zero.

This does not change the fixed points of the algorithm but

speeds up convergence. Finally, the denoised source es-

timates are calculated by applying the mask to the current

source values, as in (16).

6.1 Fast Changing Temperature Components with

Prominent Slow Activation Structures

In our conference paper (Ilin et al. 2006b), we present

examples of the analysis using the proposed algorithm.

We analyze fast surface temperature variations from the

NCEP/NCAR reanalysis data. Therefore, the temper-

ature principal components were high-passed prepro-

cessed before the analysis.

When we concentrate on the dominant, annual vari-

ance variations, two subspaces with different phases

of the yearly activations are extracted. The first sub-

space explains the fast temperature variability in the

Northern Hemisphere and has higher activations during

Northern Hemisphere (NH) winters. The second sub-

space corresponds to the fast oscillations in the Southern

Hemisphere with higher activations during NH summers.

These results are presented in more details in our paper

(Ilin et al. 2006b).

In the second experiment, we concentrate on slower,

decadal timescale of the fast temperature variations. The

corresponding filter used for calculation of source acti-

vations is shown in Fig. 9. Several components with

prominent temporal and spatial structures are extracted.

Fig. 10 reproduces the temporal patterns of some of the

components found in the data. Note that the activation

structure of each component has the annual periodicity.

However, the slow structure of the variances emerges

very clearly as well.

The temporal patterns of many components is quite re-

markable. A salient pattern is, for example, component

4 with an increasing activation level. Some of the other

sources (which are not presented here) also appear to

have either slowly decreasing or increasing activations.
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Figure 9: The frequency response of the filter used for

finding fast temperature components with slowly struc-

tured variances. The abscissa is linear in frequency but

is labeled in terms of periods, in years.
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Figure 10: The temporal patterns of the fast changing

components extracted from surface temperature mea-

surements. The black curves are the monthly averages

of the squared components and the red curves represent

activations estimated by low-pass filtering the squared

components.

Such components may form a common subspace and

they should probably be estimated together by assuming

the same activation structure for all of them.

7. COMPONENTS WITH MOST PREDICTABLE TIME

COURSE

Frequency-based approach can find a meaningful rep-

resentation of complex multidimensional data as it can

separate different phenomena by the timescales of their

prominent variations. This approach is not applicable,

however, if the mixed phenomena have similar frequency

contents. In this case, a combined time-frequency anal-

ysis (see, e.g., Särelä and Valpola 2005) could be useful

provided that interesting spectral components of different

sources have distinct activation structures. However, the

time-frequency analysis is difficult when the observation

period is short compared to the timescale of the interest-

ing data variations.

It is also possible that several components are related

to the same phenomenon and their separation is not re-

ally possible. This might be the case in the climate data.

Climate phenomena constantly interact with each other

and cannot be independent. The results of the frequency-

based analysis of the slow climate variability support this

idea. Several components extracted in the experiments

reported in Sections 4.1 and 5.2 seem to be related to

ENSO. One component gives a good ENSO index, one

somewhat resembles a differential ENSO index and one

might be related to the seasonal changes of ENSO.

Most probably, different climate phenomena could be

described by multidimensional dynamic processes and a

meaningful separation criterion would be making the dy-

namics of different groups of components as decoupled

as possible.

The model reported by Ilin (2006b) implements the

aforementioned assumptions. There, the sources are de-

composed into groups

s =
h
sT
1 . . . sT

k . . . sT
K

iT

. (17)

Each group sk is assumed to be of known dimensional-

ity and to follow an independent first-order nonlinear dy-

namic model:

sk(t) = gk(sk(t − 1)) + mk(t) , k = 1, . . . , K , (18)

where gk is an unknown nonlinear function and mk(t) ac-

counts for modeling errors and noise. Assuming separate

gk in (18) means that the subspaces have decoupled dy-

namics, that is sources from one subspace do not affect

the development of sources from other subspaces.

Without loss of generality, we can retain the assump-

tion that all the sources are mutually uncorrelated and

have unit variances. The sources from different sub-

spaces are uncorrelated due to independence and the

correlations within the subspaces can always be removed

by a linear transformation (whitening). Note that the pro-

posed subspace model can identify the sources only up

to linear rotations within the subspaces, which is a known

indeterminacy of multidimensional ICA (Cardoso 1998).

Each subspace is estimated so as to minimize the

prediction error of the corresponding subspace dynamic

model in (18). Hence, the minimized objective function is

C =
1

2

X

t

‖sk(t) − gk(sk(t − 1))‖2 . (19)

The source values are calculated using the separating

structure in (6), and therefore sk(t) = Wky(t) , where

each row of the matrix Wk defines one source of the k-

th subspace. The objective function (19) should be op-

timized w.r.t. the nonlinear function gk and the sources



sk(t) with the constraint that the demixing matrix is or-

thogonal. This can be done using the general algorithmic

framework outlined in Fig. 1. Therefore, the correspond-

ing denoising procedure alternately updates gk and sk(t).

The nonlinearity gk is updated so as to minimize the

cost function (19) keeping the current source estimates

sk(t) fixed. The exact implementation of this step de-

pends on the chosen mathematical model for gk. For ex-

ample, one can train a multi-layer perceptron model for

gk using the standard backpropagation procedure with

some sort of regularization (see, e.g., Haykin 1999). The

update of the sources sk(t) is done using the gradient de-

scent step, similarly to (8), in which the required gradients

depend on the mathematical model for gk.

8. FUTURE DIRECTIONS

In this paper, we presented several examples how the

source separation algorithms can be used for exploratory

analysis of global climate measurements. Different sep-

aration criteria can be implemented following the same

algorithmic framework of DSS by an appropriate choice

of operations in the denoising procedure.

We showed how the DSS framework can be tuned

to incorporate different separation criteria which proved

useful for exploratory analysis of climate data. We used

a clarity criterion to extract components with the most

prominent interannual variability and a spectral separa-

tion criterion to identify slow varying climate phenomena

with distinct variability timescales. More results includ-

ing the time courses of the estimated components and

the corresponding spatial patterns can be found online at

http://www.cis.hut.fi/alexilin/climate/ .

The presented algorithms can be used for finding a

physically meaningful representation of the data, for an

easier interpretation of the complex climate variability or

for making long-term weather forecasts. The meaning of

the obtained results still needs to be further investigated,

as some of the found components may correspond to

significant climate phenomena while others may reflect

some artifacts produced during the data acquisition. A

third alternative would be that the components may have

been overfitted to the data. In some of the experiments,

for example, in the extraction of components with struc-

tured variance, some of the results looked like typical

overfits. To be sure, the reliability of the results could be

tested by cross-validation.

The results of the analysis open up many possible di-

rections for future research. The results on prominent

slow climate variability presented in Sections 4–5 sug-

gest that there might be phenomena that could be de-

scribed by multidimensional processes with complex non-

linear dynamics. This makes the model presented in

Section 7 potentially useful in this application. The fact

that there are climate phenomena like ENSO which can

be observed in different weather variables (such as tem-

perature, air pressure, precipitation) raises the question

whether there are other climate phenomena like that. It

might be that such phenomena manifest themselves in

more complicated ways in the observables and could be

extracted using more complex (nonlinear, hierarchical)

models.

Other nonlinear effects should also be taken into ac-

count because they are known to exist between the state

variables. For example, some climate phenomena may

affect the fast variations of the weather conditions in cer-

tain spatial locations. Also, the most prominent phe-

nomenon in the climate system is the annual cycle and

it is quite plausible to assume that climate phenomena

may have different effects depending on the time of the

year. Then, the combined effect has a nonlinear com-

ponent as we showed in Section 5.2 for ENSO. Similar

nonlinear effects can be expected to be present among

all state variables and they could be revealed by dynamic

loading matrices.

The results on prominent variance structures reported

in Section 6 indicate what kind of features could be found

in the fast climate variations when the emphasis is put on

different timescales. The presented analysis of the vari-

ance structures can be extended in many different ways.

For example, it would be interesting to relate the compo-

nents with prominent variance structures to the known cli-

mate phenomena visible as specific projections of global

weather data. It would also be possible to use more in-

formation for more robust variance estimation. The ad-

ditional information could be in the form of other compo-

nents extracted from climate data or a hierarchical vari-

ance model (Valpola et al. 2004).

The presented algorithms can easily be applied to

other weather measurements with the possibility to

concentrate on various properties of interest, different

timescales and spatial localizations. It is also possible

that some new interesting properties emerge during such

exploratory analysis. This could motivate other types of

models and algorithms, and the algorithmic framework

used in this work can be a useful tool.
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