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Abstract— We present a method for exploratory data anal-
ysis of large spatiotemporal data sets such as global long-
time climate measurements, extending our previous work on
semiblind source separation of climate data. The method
seeks fast changing components whose variances exhibit slow
behavior with specific temporal structure. The algorithm is
developed in the framework of denoising source separation. It
finds sources iteratively and alternates between estimating the
variance structure of extracted sources and using the structure
to find new source estimates. The performance of the algorithm
is first demonstrated on a simple example of a semiblind
source separation problem with artificially generated signals.

Then, the proposed technique is applied to the global surface
temperature measurements coming from the NCEP/NCAR re-
analysis project. Fast changing temperature components whose
variances have prominent annual and decadal structures are
extracted. The extracted annual components reflect higher
temperature variability over the continents during winters. The
components with slower changing variances might correspond
to some interesting weather phenomena characterized by slowly
changing temperature variability in specific regions.

I. INTRODUCTION

In statistical climatology, weather measurements are of-

ten analyzed in order to find consistent weather patterns

which correspond to meaningful climate phenomena. One of

the classical tools in this problem is principal component

analysis (PCA) better known in climatology as empirical

orthogonal functions (EOF) [1]. PCA is a powerful technique

which can be used for reducing the dimensionality of highly

multidimensional climate data and therefore it is often used

as a preprocessing step. Rotated PCA is a more suitable tech-

nique for isolating meaningful modes of weather variations.

The basic idea is to rotate the principal components using the

concept of “simple structure” and thus obtain a representation

which is more localized in space or in time [2].

Independent component analysis (ICA) is a recently in-

troduced technique which can be used for the rotation of

principal components. The only criterion used by ICA is

the assumption of the statistical independence of the compo-

nents. Even though ICA can sometimes give a meaningful

representation of weather data [3], [4], [5], the statistical

independence is quite a restrictive assumption which can

often lead to naive solutions.

Recently, we have used a data analysis technique called

denoising source separation (DSS) to the analysis of climate
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data [6], [7], [8]. The general DSS framework was proposed

in [9] and it can be seen as generalization of ICA with relaxed

independence assumption. Instead, DSS seeks uncorrelated

components which maximally express some desired, inter-

esting properties. The general DSS algorithm is an iterative

procedure which gradually isolates components with the

desired structure. The motivation for extracting a particular

type of properties can come from general statistical principles

(e.g. maximizing non-Gaussianity of components gives the

ICA solution), expert knowledge (e.g. information about

periodicity of components), or based on some elementary

inspection of data (e.g. by observing some regular patterns

in it). Thus, DSS presents a powerful tool for exploratory

analysis of multivariate data.

In our previous works, we concentrated on slow climate

oscillations. In [6], [8], we showed that optimization of the

criterion that we termed clarity helps find the sources exhibit-

ing the most prominent periodicity in a specific timescale. In

the experiments, the components with the most prominent

interannual oscillations were clearly related to the well-

known El Niño–Southern Oscillation (ENSO) phenomenon.

Later, we extended the analysis to a more general case

where slow components were separated by their frequency

contents [7], [8]. The sources found using the frequency-

based criterion give a meaningful representation of the slow

climate variability as combination of trends, interannual

oscillations, the annual cycle and slowly changing seasonal

variations.

A relevant model is independent dynamic subspace anal-

ysis [10] in which several components are assumed to

share common dynamics. The algorithm extracts groups of

components so as to minimize the prediction error of their

common dynamic model. This allows for finding the groups

of components with the most predictable time course.

In this work, we extend our exploratory approach to the

analysis of fast changing climate phenomena. In particular,

we design an algorithm which seeks fast components with

prominent temporal structure of variances. The proposed

algorithm is again based on the general DSS procedure in

which the variance structure of the sources is isolated using

a properly designed filter. The motivation of the proposed

analysis comes from the inspection of the global weather

measurements and the observation that fast weather varia-

tions have distinct yearly structure. This raises the question

whether there are similar variations on slower timescales.

The aim of the algorithm is to capture such prominent

slow variability of the variances with the possibilty to put

emphasis on different timescales of variance oscillations.

The paper is organized as follows: In Section II, we

present the general modeling assumptions and give a short



introduction to the general DSS concept. In Section III, we

explain how the method is tuned to extract components with

the desired variance structure. A simple example presented

there shows how the proposed algorithm works on artificially

generated data. Section IV describes the climate measure-

ment data analyzed in this paper and Section V presents

the results of the proposed analysis on the climate data.

Finally, we discuss the results and possible future directions

in Section VI.

II. METHOD

A. Source separation methods

Our analysis is based on the linear mixing model when

the multivariate measurements xj(t) are assumed to be linear

combinations of some hidden components si(t) (also called

sources, factors or latent variables):

xj(t) =

N
∑

i=1

ajisi(t), j = 1, ..., M . (1)

The index j runs over the measurement sensors (typically

spatial locations), and discretized time t runs over the obser-

vation period: t = 1, ..., T . This can be expressed in matrix

formulation as

X = AS , (2)

where X denotes the matrix of observations (the sensor

index j denotes the rows and the time index t denotes the

columns), the matrix of sources S is defined likewise and the

coefficients aji make up the mixing matrix A.

If we denote the columns of matrix A by ai and the

observation vector at time t by x(t), then the model can

be written as

x(t) =

N
∑

i=1

aisi(t) . (3)

In climate data analysis, the time series si(t) usually cor-

respond to the time-varying states of the climate system,

and the loading vectors ai are the spatial maps showing the

typical weather patterns corresponding to the components.

The goal of the analysis is to estimate the unknown

components si(t) and the corresponding loading vectors

ai from the observed data X. With minimum a priori

assumptions about the sources, the problem is called blind

source separation (BSS). A popular method for solving the

BSS problem is independent component analysis in which

the only assumption used for the source separation is the

statistical independence of the sources [11].

When some prior information exists about what is interest-

ing in the data (e.g. the general shape of the time curves of

the sources or their frequency contents), the source separation

problem is sometimes called semiblind. For example, in the

climate data we might be interested in some phenomena

that would be cyclic over a specific period or would exhibit

slow changes [8]. Then, exploiting the prior knowledge may

significantly help in finding a useful representation of the

data.

Denoising source separation (DSS) [9] is a general algo-

rithmic framework which can incorporate the prior knowl-

edge or preferences in order to identify the model in Eq. (1).

The sources si(t) estimated by DSS are generally assumed

1) to be uncorrelated and 2) to have some structure known

from the available prior information. Typically, maximizing

the structure of components makes them more independent.

Thus, DSS provides a general framework for designing

semiblind source separation algorithms which can be seen

as generalization of ICA.

DSS is based on an estimation procedure in which the prior

knowledge (and hence the separation criterion) is expressed

in the form of a denoising function. Here, we will give a brief

exposition of the DSS framework, more details including

rigorous derivations and analysis were reported in [9].

B. The DSS algorithmic framework

1) Whitening: The requirement that the sources are un-

correlated is assured in DSS by using a preprocessing step

called whitening [11]. Whitening is a liner transformation

usually performed by PCA with normalization of the princi-

pal components to unit variances. Here, we denote the matrix

of whitened data by Y. It has the same dimensions as X

unless dimensionality reduction is combined with PCA.

The matrix of whitened data has uniform covariance

structure, which means that any matrix

S = WY , (4)

produced by an orthogonal matrix W, has unit covariance.

Thus, any orthogonal basis in the whitened space defines

uncorrelated sources of unit variance. Therefore, the sources

can be estimated by Eq. (4) with the restriction that the

demixing matrix W is orthogonal.

2) Iterative procedure: The optimal demixing matrix W

is found so as to maximize the desired structure of compo-

nents S, that is by using the second DSS requirement. This

requirement is introduced in the algorithm in the form of the

denoising function. The purpose of denoising is to emphasize

the desired structure in the current source estimates, which

assures gradual maximization of the interesting properties.

The general algorithmic framework of DSS is the iterative

procedure presented in Fig. 1. Whitening is followed by three

successive steps:

1: Source estimation: S = WY,

2: Applying the denoising function: Snew = f(S),

3: Reestimation of W = orth(SnewY
T ).

The iterations continue until the source estimates do not

change. The components can be extracted either simultane-

ously (symmetric approach) or one after another (deflation

approach). In the symmetric approach, the operator orth(.) in

Step 3 gives the orthogonal projection of the matrix SnewY
T

onto the set of orthogonal matrices. The basis of the deflation

approach is the Gram-Schmidt orthogonalization method

when the vector defining the currently found component is

made orthogonal to the previously found vectors in W (see,

e.g. [11]).
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Fig. 1. The steps of the DSS algorithmic framework.

Without denoising, the iterative procedure is equivalent to

the power method for computing the principal components of

Y. Since Y is white, all the eigenvalues are equal and the

solution without denoising becomes degenerate. Therefore,

even slightest changes made by denoising can determine the

DSS solution. Since the denoising procedure emphasizes the

desired properties of the sources, DSS can gradually isolate

the desired structure of the sources.

The described procedure can be significantly simplified if

the denoising function f can be implemented by a linear

temporal filter, operating on the rows of its matrix argu-

ment: f(S) = SF, with F the filtering matrix. Then, the

separation can be preformed in just three steps: whitening,

linear denoising (filtering) and PCA on the denoised data [9].

Such simple denoising was used in our previous works on

exploratory climate data analysis [6], [8] but it is out of the

scope of this paper.

3) Spatial patterns: In the applications, we are interested

not only in the sources (rows of matrix S), but also in the

matrix A in Eq. (2). The i-th column of A is a spatial map

showing how the effect of the i-th source is distributed over

the sensor array. The mixing matrix can be calculated from

the whitening and demixing matrices [8]. Since the extracted

components si are normalized to unit variances, the columns

of A have a meaningful scale.

Note that since we are now looking for components

with a certain variance structure, the signs of the extracted

components are not determined. Such ambiguity arises when

f(S) = −f(−S). The ambiguity of the solution is even

higher for subspace models such as independent subspace

analysis [12], [13], [10]. There, the sources are decomposed

into groups and the sources within a group are generally

assumed dependent while components from different groups

are mutually independent. Such models can be estimated only

up to orthogonal rotations of sources within the groups.

A subspace of sources can be visualized by the observation

variance explained by its components. From Eq. (1) and

the condition that the sources si are mutually uncorrelated

and have unit variance, it follows that the variance of the

observations equals

var{xj} =

N
∑

i=1

a2

ji var{si} =

N
∑

i=1

a2

ji . (5)

Thus, the variances explained by the sources from one

subspace {si|i ∈ I} is

varI{x} =
∑

i∈I

a
2

i , (6)

where a
2

i denotes the vector of the squared elements of the

mixing vector ai. The quantity in Eq. (6) is a vector whose

dimensionality equals the number of sensors and therefore it

can be represented as a spatial pattern showing the effect on

the observation variance in different spatial locations.

III. ISOLATING COMPONENTS WITH STRUCTURED

VARIANCE

A. Measuring structure

In this work, the goal of the analysis is to extract fast

changing components whose variance (or activations) would

have prominent temporal structure. This analysis was moti-

vated from the inspection of the global climate measurements

from the NCEP/NCAR reanalysis project [14], [15]. In

particular, it is easy to observe that the intensity of fast

weather oscillations depends on the time of the year. This

variability is so prominent that any other structure in the

variance is not immediately visible but it could be there.

An assumption that we make in our analysis is that the

interesting sources have non-stationary variances, that is their

level of activation changes with time. Moreover, the variances

of the sources have prominent temporal structure in a specific

timescale chosen for investigation. The analysis can be done

for different timescales of variance oscillations and the found

interesting components would generally be different. It is

important to be able to neglect annual variability in the

variance because it is so dominant that it would mask any

other, weaker phenomena.

Let us now derive the optimization criterion which follows

from the desired source structure. We regard here the source

values {s(t) | t = 1, . . . , T} as a realization of a stochastic

process {st} consisting of random variables st. Note that

the difference in notations: s(t) denotes the sample from

a random variable st. We assume that variables st are

Gaussian, with zero mean and changing variances v(t). We

can define the mean variance of {st} as

lim
T→∞

1

T

T
∑

t=1

v(t) . (7)

We propose to measure the amount of structure in each

source using the difference F = H ′(ν)−H ′(s), where H ′(s)
denotes the (differential) entropy rate of {st} and H ′(ν) is

the entropy rate of a Gaussian process {νt} with i.i.d. zero-

mean variables νt whose variances E{ν2

t } are stationary and

equal the mean variance of {st} defined in Eq. (7). The

Gaussian process with stationary variances has the highest

entropy rate among all the processes with the same mean

variance. Therefore, F is a good measure of non-stationarity,

it is always nonnegative and it attains its minimum value of

zero if and only if {st} is a Gaussian process with stationary

variances. The proposed measure resembles negentropy [11]

which is often used as as measure of non-Gaussianity of a

random variable.

Now we note that the assumption that variances v(t) have

prominent variability in the known timescale helps estimate

v(t) from one realisation of the stochastic process. Then,



given a realisation of length T , the quantity in Eq. (7) can

be estimated as 1

T

∑

t v(t). The Gaussian variables st are

assumed independent given v(t) and therefore the entropy

rate of {st} can be estimated as

H ′(s) =
1

T

∑

t

H(st) =
1

T

∑

t

1

2
log 2πev(t) , (8)

where H(st) denotes the entropy of st. This yields

F =
1

2
log

1

T

∑

t

v(t) −
1

T

∑

t

1

2
log v(t) ≥ 0 . (9)

In practice, whitening makes 1

T

∑

t s(t)2 = 1 for any source

estimate, which allows for the assumption that

1

T

∑

t

v(t) = 1 . (10)

This simplifies Eq. (9) to

F1 = −
1

T

∑

t

1

2
log v(t) . (11)

The statistic F is a good measure of structure, which is

related to non-stationarity of variances and has some connec-

tion to non-Gaussianity. The latter can be seen by noting from

Eq. (10) that the variances v(t) fluctuate around unity and

therefore we can use the approximation log(1+ǫ) ≈ ǫ− 1

2
ǫ2.

The yields the quantity

F2 ∝
1

T

∑

t

v2(t) − 1 (12)

which measures the magnitude of the variance fluctuations

around the mean variance. For a process with stationary and

unit variance, F2 equals zero. Now note that if the local

variance v(t) is approximated by s2(t), Eq. (12) gives the

fourth moment of the random variable s. Such higher-order

moments are often used for measuring non-Gaussianity [11].

In order to use the proposed measure, we have to be

able to estimate the variances v(t) of a signal in each time

instant. This is usually done by estimating local sample

variances because the variance is assumed to change slowly.

We, however, want to concentrate on a specific timescale

of variance oscillations and therefore we assume that the

variance can be estimated in practice by filtering the squared

signal values s2(t) such that only the interesting frequencies

are preserved.

B. The algorithm

The criteria in Eq. (11) and (12) are functions of the

variances v(t) which are estimated from the sources s(t).
Thus, F1 and F2 are functions of s(t) and can be maximized

w.r.t. s(t) by the gradient ascent method:

snew(t) = s(t) + µ
∂F

∂s(t)
, (13)

where µ is the step size. Note that the orthogonality con-

straint for the demixing matrix W makes it possible to

modify the update rule in Eq. (13) by adding a term βs(t),

with β some constant, without changing the fixed points of

the algorithm (see details in [9]). Thus, the update rule

snew(t) = f(s(t)) ∝ βs(t) +
∂F

∂s(t)
(14)

optimize the same criterion as the rule in Eq. (13). In the

DSS terminology, Eq. (14) describes the denoising function.

The gradients of F1 and F2 can be shown to yield the

denoising function

snew(t) = g(v(t))s(t) , (15)

where the nonlinearity g is given by

for F1 : g(v) ∝ β − 1/v , (16)

for F2 : g(v) ∝ β + v , (17)

and β is a constant which can be chosen arbitrarily. Note that

we use the term mask for the values of g(v(t)) as they are

applied to the current source estimates to get the new ones.

However, neither of the two nonlinearities is robust. The

nonlinearity in Eq. (17) behaves nicely for small values of

v but it gives too much weight to large v. This makes the

algorithm very sensitive to outliers and very often results

in overfitting [16]. Note that F2 is related to higher-order

moments which often suffer from this problem. In contrast,

the nonlinearity in Eq. (16) saturates for large v but it is

sensitive to small v where the gradient approaches infinity.

Therefore, we propose to use the denoising function in

Eq. (15) with a monotonic nonlinearity g(v) which starts

from zero and saturates for large values, for example,

g(v) = tanh(v) . (18)

It is possible to show that g in Eq. (18) approximates the

nonlinearity in Eq. (16) with a specific choice of β and some

constraints on the smallest possible values of v(t).
The proposed denoising procedure consists of several

steps:

1: Estimate source variances by filtering the squared signal

such that only the interesting frequencies are preserved:

{vi(t) | ∀t} = filterf{s
2

i (t) | ∀t} . (19)

2: Use the variance values as the masks if the measure F2

is optimized (this follows from Eq. (17) with β = 0):

mi(t) = vi(t) (20)

Otherwise, apply the nonlinearity g, e.g. from Eq. (18):

mi(t) = g(vi(t)) . (21)

3: We shift the masks such that their minimum values are

put to zero. This does not change the fixed points of the

algorithm but speeds up convergence.

mi(t) = mi(t) − min
t

mi(t) . (22)

4: Compute the new source estimates:

si,new(t) = mi(t)si(t) . (23)
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Fig. 2. An artificial example of source separation based on the temporal structure of variances. (a) - Artificially generated sources with structured variances.
(b) - Linear mixtures of sources. (c) - Top: The sources extracted by the proposed algorithm with the emphasis on variance oscillations corresponding to
eight bursts during the observation period. Bottom: The squares of the found components (black) and their filtered versions v(t) (red).

The proposed algorithm can also be used for subspace

analysis where several sources are assumed to share the same

variance structure. In this case, the subspace activation can

be estimated on Step 1 by taking the average of the squared

sources from the same subspace:

{v(t) | ∀t} = filterf

{

1

K

K
∑

i

s2

i (t)

∣

∣

∣

∣

∀t

}

. (24)

Then, the same mask calculated from v(t) is applied to each

component from the corresponding K-dimensional subspace.

C. Artificial example

We demonstrate the proposed algorithm on a simple artifi-

cial example. The sources in Fig. 2a have prominent variance

structures. The variances of the first two sources change pe-

riodically with eight activation bursts during the observation

period. The phase of the activations is different for the two

sources. The third component has slowly changing variance

and the variance of the fourth component is stationary.

Fig. 2b presents linear mixtures of the sources generated

using a randomly chosen mixing matrix. The oscillating

variance structure is almost invisible in the observations, it

is somewhat possible to capture it only in observation 4.

The algorithm was set to extract two sources whose

variances have prominent variability in the timescale cor-

responding to the activation periodicity of sources 1 and 2.

The motivation for investigating this timescale may come,

for example, from the visual inspection of observation 4 or

from the periodicity of some known phenomena (such as

the annual cycle in climatology). The masks are calculated

here using Eq. (20) and the sources are estimated one after

another by using deflation.

The extracted sources are shown in Fig. 2c to reconstruct

the original sources 1 and 2. The prominent activation struc-

ture in the timescale of interest is very clear from Fig. 2c. The

results show that the proposed algorithm is able to extract

the components which are most structured temporally in a

chosen timescale. In the presented example, it would also be

possible to extract the original component 3 if the emphasis

were put on the slowest variance oscillations.

IV. CLIMATE DATA AND PREPROCESSING METHOD

We apply the proposed DSS-based algorithm to surface

temperature measurements provided by the reanalysis project

of the National Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP/NCAR)

[14], [15]. The data represent globally gridded measurements

daily over a long period of time. The spatial grid is regularly

spaced over the globe with 2.5◦ × 2.5◦ resolution.

The reanalysis data is not fully real because the missing

measurements have been reestimated based on the available

data and approximation models. Yet, the data is as close to

the real measurements as possible. Although the quality of

the data is different, we used the whole period of 1948–2004.

Thus, the data contain more than 10,000 spatial locations and

about 20,000 time instances.

To preprocess the data, the long-term mean was removed

and the data points were weighted to diminish the effect of a

denser sampling grid around the poles: each data point was

multiplied by a weight proportional to the square root of the

corresponding area of its location. The spatial dimensionality

of the data was then reduced using the PCA/EOF analysis

applied to the weighted data. We retained 100 principal

components which explain more than 90% of the total

variance, which is due to the high spatial correlation between

nearby points on the global grid.

In this work, we are interested in fast changing climate

phenomena. Thus, the principal components were further

high-passed filtered to retain only high-frequencies. The

cut-off frequency of the filter was set such that only the

oscillations with a period shorter than one month are passed.

V. EXPERIMENTS ON CLIMATE DATA

A. Fast components with annually structured variance

The aim of the first experiment is to extract fast changing

climate components whose variances have prominent annual
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Fig. 4. The activation structure of the two subspaces with annually
structured variances for a fragment of data. The upper and lower curves
correspond to the subspaces with 47 components and 33 components,
respectively. The black curves are the monthly averages of the squared
values of all the sources from the same subspace and the red curves are
the filtered versions of the black curves.

structures. Therefore, a filter which passes frequencies within

a narrow band around the annual frequency (see Fig. 3) was

used in the denoising procedure. The masks were computed

using Eq. (20).

As the first step, we did exploratory analysis by applying

the proposed algorithm several times in order to extract as

many annually structured components as possible. Deflation

was used to extract distinct components. It turned out that

it is possible to find many sources with annually structured

variances. For the considered 100-dimensional data, more

than eighty found components had very clear annual ac-

tivation structure. Another observation was that the found

components can be categorized into two groups with the

same phase of the annual activation. One group contained

about 45-50 components while the other group had about

30-35 sources. The rest of the components had relatively

weak annual patterns.

These results suggest that there are two subspaces of

components with annually structured variances. Thus, we

applied the algorithm again in order to extract two subspaces

of sources sharing the same variance structure. Eq. (24) was

used for the variance estimation in the denoising procedure.

The dimensionalities of the subspaces were set to 47 and 33.

Fig. 4 shows a fragment of the variance temporal structures

of the two extracted subspaces. The black curves are the

monthly averages of the squared values s2

i (t) for all the

sources from the same subspace and the red curves represent

their filtered versions. The annual periodic structure of the

variances emerges very clearly. The phase of the activation

is different for the two subspaces. The first subspace corre-

sponds to the higher temperature variability during Northern

Hemisphere (NH) winters and the peaks of the activations

for the second subspace are during NH summers.

The spatial patterns corresponding to the two subspaces,
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Fig. 5. The observation variance explained by the components of the
subspaces with annually structured variances. The pattern shown on the left
corresponds to the first subspace (upper curves in Fig. 4) and the pattern
shown on the right corresponds to the second subspace (lower curves in
Fig. 4).

calculated according to Eq. (6), are shown in Fig. 5 [17]. The

group of components with the activations during NH winters

has a clear localization in NH with much weaker loadings

in the Southern Hemisphere (SH) (the SH pattern is not

shown for this subspace). The loadings of the other subspace

are, in contrast, mostly localized in SH. The two subspaces

capture most of the fast variability of the observations. Thus,

when concentrated on the annual variance oscillations, the

proposed algorithm can separate two subspaces which reflect

higher temperature variability during winters in the Northern

and Southern Hemispheres.

B. Fast components with slowly changing variance

The goal of the second experiment is to find prominent

components whose variance is structured in the very slow

timescale. Therefore, the variance estimation in the denois-

ing procedure includes a filter which emphasizes variance

oscillations in the slow, decadal timescale (see its frequency

response in Fig. 3). The components were extracted one

by one using the deflation approach and the masks were

computed using Eq. (21). The extracted components were

ordered according to the amount of structure estimated by the

measure in Eq. (12). The leading components are therefore

considered most prominent for the used separation criterion.

The temporal structures corresponding to the twenty lead-

ing components are shown in Fig. 6. Note that the dominant

loadings of several components are mostly located either

in NH or SH. For such components, we use labels N1-N5

and S1-S5, respectively. The components with prominent

patterns in both hemispheres are labeled as B1-B10. It

can be seen from Fig. 6 that the annual variability is the

dominant variance structure of the extracted components. It

is especially clear for the components mostly localized in

one of the hemispheres. However, slow variance oscillations

also emerge very clearly. In many sources, several successive

years have either increased or decreased level of activation.

The temporal structure of many components is quite

remarkable. A salient pattern is, for example, component

S2 with the constantly increasing activation level. Increasing
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Fig. 6. The monthly averages of the squared components (black) and the variances estimated by low-pass filtering the squared components (red).
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Fig. 7. The spatial patterns of some components with prominent loadings in NH (N1-N5, top row), in SH (S1-S5, second row) and in both hemispheres
(B1, B4, B6-B8, bottom rows). The scale of the maps is in degrees centigrade.



variability can also be noticed in B8. On the contrary,

some of the sources (e.g. S3, B3, B4, B5, B9) appear to

have slowly decreasing activations. Such components may

form a common subspace and they should probably be

estimated together using the subspace version of the proposed

algorithm. Another prominent temporal pattern is B7 with a

remarkably abrupt change in the mid-seventies.

The temperature maps corresponding to the extracted com-

ponents (due to the space limitation, we present only some

of them in Fig. 7) also have several prominent patterns, for

example, a dipole structure in North America in component

B2. The dominant loadings of the aforementioned groups

(S3, B3, B4, B5, B9) and (S2, B8) are mostly located in the

same regions, which is another indication of the similarities

within these groups.

VI. DISCUSSION

The paper presents a new extension of our previous works

[6], [7], [8] on applying the DSS framework to the ex-

ploratory analysis of climate data. In this work, we proposed

an algorithm which seeks components with temporally struc-

tured variances. The optimized criterion has some connection

to higher-order statistics and can be used for independent

component analysis and blind source separation (BSS) for

different types of data. It can be proven rigorously that the

proposed algorithm can identify the original signals mixed

in the data, provided that the signals have non-stationary

variances and they are mutually independent.

An advantage of the proposed approach is that it is possible

to concentrate on different timescales of data variations by

changing the filter used in variance estimation. For solv-

ing the BSS problem, the emphasis on a properly chosen

timescale can improve the separation results, especially for

noisy data when other separation criteria cannot provide

reliable components. In the exploratory analysis of data, the

method allows for finding different interesting phenomena in

the same dataset by concentrating on different timescales.

In this paper, the proposed algorithm was used to analyze

fast oscillations of global surface temperatures. When we

concentrated on the dominant, annual variance oscillations,

two subspaces with different phases of the yearly activations

were extracted. The first subspace explains the fast temper-

ature variability in the Northern Hemisphere and has higher

activations during NH winters. The second subspace corre-

sponds to the fast oscillations in the Southern Hemisphere

with higher activations during NH summers.

In the second experiment, we concentrated on the slower,

decadal timescale of the fast temperature oscillations. Several

components with prominent temporal and spatial structures

were extracted. The meaning of the found components needs

to be further investigated, some of them may correspond

to significant climate phenomena while others may reflect

some artifacts produced during the data acquisition. A third

alternative would be that the components may have been

ovefitted to the data, but we do not believe so because they do

not have the structure typical for overfitted solutions [16]. In

contrast, without using the nonlinearity g in Eq. (21), some

of the results looked like typical overfits. To be sure, the

reliability of the presented results could be tested by cross-

validation.

The approach presented in this paper can be extended in

many different ways. For example, it would be interesting to

relate the components presented here to the known climate

phenomena visible as specific projections of global weather

data. It would also be possible to use more information for

more robust variance estimation. The additional information

could be in the form of other components extracted from

climate data or a hierarchical variance model as in [18].
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