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Abstract

In humans, consciousness is a process taking place on the neocortex. I argue that from an 
information-processing perspective this process is, among other things, distributed selection 
of useful information. I review simulation results from a computer model of the process. The 
model is able to learn abstract categories and invariant features in an unsupervised manner. It 
is also able to segment out individual objects and switch between different objects. Object 
representations emerge from subsymbolic representations.

1. Introduction

My research group is developing a brain-based cognitive architecture. The goal is to understand the 
information-processing principles of the brain and to apply them for building intelligent machines. We 
are roughly following the path taken by the evolution, using the vertebrate, mammalian and eventually 
human brains as our guide along the way.

Our guiding principle is that the brain has evolved for intelligent behaviour. In order to understand the 
brain, we need to understand the problems for which the brain is the solution. For the most part of the 
evolutionary history of the brain, the problem was very concrete and related to interaction with the 
environment. This is why we use robotics as our target application area and focus first on sensorimotor 
coordination rather than higher cognition and symbolic reasoning. Neuroscience has taught us that 
higher cognition relies on the same brain structures which originally evolved for concrete motor tasks. 
We therefore think that once we understand the computational principles of various parts of the brain, 
we can apply the same principles to higher cognition, too.

Currently we have models of the cerebellum, basal ganglia and neocortex up and running, and we are 
later going to include a model of the hippocampus. In my talk, I will focus on the neocortex because it 
is  the  part  which  is  most  relevant  for  consciousness.   I  will  take  an  information-processing 
perspective: consciousness is the process which happens on the neocortex. My aim is to explain what 
this process is doing, for what purpose and what kinds of emergent properties it has.

In a nutshell, the neocortex is, among other things, a distributed information selection system. The 
cortex consists of a large number of processing elements, cortical areas, organized into a hierarchy. 
Each area processes bottom-up information and selects the bits which it deems important in light of 
the information which it receives from the others (top-down and lateral input).



2. Bayesian decision theory

Before going into further details, let me first give a bit of theoretical background: Bayesian decision 
theory is the golden standard of intelligent behaviour. The recipe is tremendously simple:

1) First gather all information about the world, combine this into a distribution which quantifies 
how much the agent believes in different propositions (states of the world, facts, outcomes of 
actions,  etc.).  This  information  is  represented  in  terms  of  the  joint  probability  of  all  the 
relevant quantities and can be computed following a few simple rules (Bayes’ rule and the 
marginalization principle).

2) Then choose the  action which maximises  the expected utility—in other words,  the  action 
which the agent believes will, on average, lead to the best outcome.

In Bayesian decision making, one is first supposed to lay down the facts (all the facts) and then make 
an  informed  decision.  Decision  making  is  neatly  separated  into  two  stages:  analysis  and  action 
selection. Computational issues aside, the Bayesian recipe has been shown to be optimal. It is simply 
the clever thing to do. It is also the optimal way to learn since any parameters of the internal model 
can be treated just as any other unknown variables of the external world.

Recently  there  has  been  a  lot  of  interest  in  “the  Bayesian  brain”  since  many aspects  of  cortical 
processing can be explained from a Bayesian point of view. However, beautyful and powerful as the 
theory is, one runs into serious difficulties in the real world where computational issues cannot be 
neglected. The problem with this “optimal” approach is that in practice there is so much information to 
be absorbed that the processing becomes completely overwhelmed with nitty-gritty details already in 
the first stage. In practice, it is never possible to consider all the possibilities (past, present and future 
paths of the whole universe).

3. Distributed selection of useful information

The solution which the neocortex seems to  have adopted is  to  divide and conquer:  distribute the 
process of analysing and selecting relevant information. Selection is a type of decision and in theory it 
is suboptimal to “jump into conclusions” before all the available information is integrated and all the 
possibilities considered. In practice, however, selection is necessary in order to avoid choking the 
system with an overwhelming amount of irrelevant information.

Cortical areas can be considered as agents whose goal is to maximise the amount of useful information 
and,  importantly,  minimise  the  amount  of  irrelevant  information:  to  find  something  new  and 
interesting. Let me elaborate a bit:

Something.  Each area has its own “receptive field” from which it  receives information. Other 
things being equal, it is sensible to try to maximise the amount of information that the area passes 
forward. This can be accomplished by minimising the reconstruction error of the inputs. Often the 
inputs are noisy and it pays to use “prior information” to make sense of them. In the cortex, there 
are numerous top-down and lateral projections that “modulate” the processing. The Bayes rule 
tells  how  predictions  from lateral  and  top-down  information  can  be  used  for  improving  the 
estimate of what the bottom-up information means.

New.  It is useless for a cortical area to represent some piece of information if the other areas 
already represent the same thing. While top-down and lateral predictions about the bottom-up 
information may increase the probability of a given feature actually being present, a predicted 
feature also loses value. It no longer pays to represent it. It has been shown that in noisy, low-
contrast situations, predictability increases the cortical responses while the opposite is true in high-
contrast situations.



Interesting. How do the cortical areas know which pieces of information are relevant? I suggest 
that top-down and lateral connections are used here, too. If a cortical area finds something new to 
represent and afterwards the others follow suit, that must have been an important bit of news. 
Whether others are following can be deduced from the same mapping which is used for predicting 
the bottom-up features in the previous steps. If bottom-up activity follows the prediction, it was 
old news, but if the order is reversed, it was something which caught the interest of the others. 

The above three points can be implemented with rather simple mechanisms because they all rely on 
the same mapping with relates the top-down and lateral context with the local bottom-up information. 
The first point (“something”) is about probabilities and answers the question “what is it?” The two 
other points are about utility: “is it important?”

Ultimately,  there  are  subcortical  structures  such  as  cerebellum and  basal  ganglia  which  are  “by 
design” interested in certain types of information (e.g. information which predicts motor responses or 
reward) and which give feedback to the cortex about the relevance of information. This evaluation of 
relevance trickles down the cortical hierarchy all the way down to primary sensory.

Just as the “optimal” Bayesian approach, this  distributed recipe can be used both for selection of 
relevant information (behavioural timescale, here and now) and learning, which can be considered as 
selection over longer timescales (select which types of features will be considered at all). The main 
difference is that the distributed approach relies on specialised experts with a limited scope rather than 
on a single omniscient decision maker.

It is interesting to note that similar distributed learning, analysis and valuation of information can be 
identified in the information exhange in human communities such as media or science (cf. citation 
index).

4. Biased competition and competitive learning give rise to attention and abstractions

The above picture of the cortex as a distributed selection system is by no means totally new. Desimone 
and Duncan suggested that selective attention results from locally competing neural populations which 
are reciprocally connected. When long-range connections between the areas bias local competition, a 
process with the characteristic features of selective attention should emerges. Deco’s group has shown 
with  simulations  that  this  so-called  biased-competition  model  of  attention  agrees  very  well  with 
neurophysiological and psycophysical experiments.

Our group has extended this work by including learning in the system. It is actually a rather straight-
forward idea to couple biased competition with competitive learning which has been used for learning 
representations for a long time. We have been able to show that this biased competitive learning gives 
rise to a hierarchy of increasingly abstract representations, much as those found in the neocortex. 

Figure 1 gives an example of what a hierarchy of distributed areas might look like.

5. Emergent symbols and the train of thought

The messages used by the brain to communicate between areas (cortical or subcortical) are relatively 
simple  patterns  of  neural  activity.  In  particular,  the  code  is  distributed.  Each  neuron  conveys 
information about a certain feature of the input and objects thus need to be coded by a population of 
neurons. This works fine for a single object but leads to potential confusion if multiple objects are 
present. This is the so-called binding problem.

The binding problem can be solved by representing only one object at a time. The machinery for 
selecting  relevant  information  can  easily  be  tuned  such  that  it  values  the  coherence of  the 
representation. It is enough to favour those pieces of information which agree with top-down and 
lateral context.



Figure 1. An example of a distributed selection process. The neurons on each area (horizontal bar) receive 
bottom-up input (solid arrows) and compete locally. Competition is biased by top-down and lateral connections 

(dashed arrows).

Figure 2. The average activity level of three different coalitions of neurons is shown. There were five cortical  
areas, each consisting of ten neurons. The neurons of different areas were connected such that there were ten 
coalitions (each neuron of an area belonged to one of the coalitions). Local competition biased by long-range 

connections makes one of the populations win the competition. Gradual fatigue starts to erode the active 
population but it persists because of mutual support from the neurons in the same coalition. When the weakest  

members of the coalition start failing, the coalition quickly crumbles and is replaced with the next lucky winners.

Without some extra mechanism, the system seeking coherence would quickly get stuck with the first 
stable coalition which wins out the competition with the other populations. Figure 2 shows the results 
of a simple simulation which demonstrates what happens when fatigue is added to the system. Fatigue 
here means that active neurons gradually lose sensitivity. Once some of the neurons of the active 
population start  losing their  local competition to other neurons, a domino effect makes the whole 
coalition collapse and a new coalition takes power.

The  emergent  behaviour  of  the  system  shows  relatively  discrete  switching  between  individual 
coalitions.  Moreover,  learning  can  give  rise  to  different  numbers  of  coalitions  depending  on  the 
number of different object categories present in the input data. Figure 3 depicts eight sample images 
fed into a distributed visual hierarchy. There are six different categories of objects, each with a very 
large number of potential instantiations. Although there have always been two different objects present 
in the input stimuli, the system has learned that there are six categories, each represented by a different 
coalition of interconnected neurons.



Figure 3. Eight sample images from the training set.

Figure 4. Four samples of test data, each of which have activated the same coalition of neurons.

Figure 4 gives an idea about the variability of inside the categories. Each of the samples has activated 
the same coalition of neurons. The system has learned to categorise the inputs and recognize in a 
totally unsupervised manner. Moreover, when shown a picture with two objects as in the training data, 
the representation keeps switching between two coalitions corresponding to attention switching 
between the two objects.

The above mentioned system had never seen dynamically changing inputs nor did it have a proper 
mechanism for representing dynamics. However, it would be relatively easy to add such a mechanism 
which uses learned dynamics to bias new coalitions. This should give rise to a train of thought, 
coalitions of neural activations following each other, mirroring the learned dynamics of the external 
world. In other words, the system would have imagination.

6. Discussion

Machine consciousness  is  not  my goal  as  such but  I  believe that  consciousness  equates  with the 
distributed selection process which is needed for intelligent machines. Rather than ask whether the 
process is conscious, I would like to know whether the process is useful and can support intelligent 
behaviour.  The  system will  certainly  need  further  refinements  before  it  can  cope  with  nonlinear 
dependencies between features and relations between multiple objects. However, the basic principle 
seems sound and it is promising that the system is able to learn complex invariances and categories 
without  having  explicitly  been  told  about  them  or  having  seen  isolated  objects  in  “laboratory 
conditions”.

When thinking about how the selection process relates to consciousness, several questions come to 
mind. Among the easy ones are: can the system make decisions and can it be aware of its own thought 
processes. The answer seems to be yes to both questions. First, perceptual selection is an important 
part of decision making: what your visual system picks out affects what you are going to do; mass 
media affects political decision making by selecting the agenda; and so on. In a distributed system, the 
border between analysis and decision making becomes obscured and one can argue that the same 



process which we call attention in sensory modalities corresponds to decision making in cortical motor 
hierarchy. Second, if the system is able to represent processes and regularities in the outside world, 
there is no particular reason why it could not do the same for its own internal processes. After all, 
everything  is  just  neural  patterns  to  the  system.  Of  course  there  are  many  other,  more  difficult 
questions. Building an intelligent system and studying it seems like a promising way to proceed.
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